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Preface 
New lasers that are more efficient and operate at other wavelengths than 
those currently in use are constantly being required for a variety of pur- 
poses. In addition to commercial uses, military uses vary, for example, 
from communications, range finding, missile guidance, and countermeas- 
ures to high-powered weapons systems and nuclear fusion. The develop- 
ment of lasers with new, unique properties is desirable also because they 
stimulate new commercial and military uses that previously may have 
been unforeseen. 

Solid-state laser materials doped, primarily, with triply ionized lan- 
thanides (rare-earth ions) play an important role in this scheme. New vari- 
eties of exotic single-crystal materials are continuing to be developed, and 
it is desirable to have a method for predicting their potential properties as 
laser host materials. New lanthanide/host laser systems generally must 
rely on time-consuming and costly experimental programs for evaluation 
of their efficiency. The effort required also is very massive for developing 
techniques to grow optical quality crystals of sufficiently large dimensions. 

There is a need, therefore, to have a theoretical capability to aid in the se- 
lection, from among the many lanthanide/host combinations, of the sys- 
tems that offer the best potential for fulfilling a predetermined set of re- 
quirements. The theoretical effort in the area of laser research at the Army 
Research Laboratory has been directed toward this goal. In this effort, we 
developed a consistent model of the host and interactions to predict spec- 
tra and intensities for all the lanthanides in a given host and predict these 
quantities for new systems. 

Ae s 0cs ionfOP 

DTIC TAB O 

Justification 

Wf 

By. 
BlgtrJpution/ 

Avatj.ahijLn,||_Qodoa     _ 
\hfcM   BB&fQW 



Contents 

Preface 3 
1. Introduction  7 
2. Background  8 

2.1 Phenomenological Bkm  8 
2.2 Derived Bkm ....10 
2.3 Electric and Magnetic Dipole Transition Probabilities and Branching Ratios  11 

3. Computer Programs  13 
4. Analysis of Rare-Earth Spectra  14 
5. Conclusion  17 
Acknowledgments 18 
References  19 
Distribution  27 



1. Introduction 
Solid-state laser materials, for the most part, involve a triply ionized lan- 
thanide (rare-earth ion) as a dilute substitutional impurity in a crystalline 
host material. There are exceptions, such as the lanthanide 
pentaphosphates (LnPsO^) that, rather than being dilute, are effectively 
100-percent doped, and the glasses that are not crystalline in the sense of a 
systematic lattice. However, in the pentaphosphates very little concentra- 
tion quenching is observed, indicating that each lanthanide ion is elec- 
tronically isolated, and in the glasses some local ordering exists near the 
impurity so that, in either case, one may consider the effects in the context 
of the original assumptions. 

The 13 interesting triply ionized lanthanides from Ce3+ through Yb3+ have 
complete electronic inner cores through the 4d10 shell and outer shells of 
4fN5s25p6, where 1 < N < 13. The incomplete 4/shell is optically active. It 
has a multitude of energy levels (representing the many ways N individual 
electrons may orient their angular momenta with respect to each other), 
between which the ion may make transitions and release or absorb radia- 
tion. These energy levels are highly degenerate in the free ion, but in the 
presence of the electrostatic (crystal) field due to the constituent ions of the 
host material, a splitting occurs that manifests the breakdown of spherical 
symmetry in crystals. The outer 5s25/?6 electrons, as well as the inner core 
to a lesser extent, serve to shield this crystal field, so that in contrast with 
the transition-metal ions, the crystal field can be considered quite accu- 
rately as a perturbation on the free ion. 

The methods of our theoretical study of this problem are as follows: 

(1) To obtain free-ion wavefunction bases for the 4fN configurations to be used 
in calculating interactions relevant to the triply ionized lanthanides in a 
given host material. 

(2) To postulate a phenomenological crystal-field Hamiltonian of the form 

km i 

having the point-group symmetry at the impurity ion site, to vary the phe- 
nomenological Bkm in a free-ion basis of states, and to fit theoretical to ex- 
perimental energy levels. 

(3) To characterize the host material so that a summation may be performed 
over the constituent ions to determine their cumulative electrostatic field 
at the impurity (lanthanide) ion site. 

(4) To consider shielding, distortion, dielectric, wavefunction overlap (cova- 
lency), and other such effects that may influence the observed spectra. 



(5) To obtain derived Bkm from the fundamental properties of the host mate- 
rial (purpose 3) and other impurity-ion/host interactions (purpose 4) and 
to reconcile them with phenomenological Bkm (purpose 2) by refining the 
characterization of the host and the nature of the interactions. 

(6) To use the resultant consistent model of the host and interactions to pre- 
dict spectra and intensities for all the lanthanides in a given host, and to 
predict these quantities for new systems once the crystallographic param- 
eters of a new host material are known. 

(7) To determine which systems have the greatest potential for fulfilling the 
requirements for a given application. 

2. Background 
The research concerned with identifying the energy levels of rare-earth 
ions in crystals and understanding the interactions that determine these 
Stark splittings has proceeded along two general lines. The phenomeno- 
logical approach has been to diagonalize the crystal-field Hamiltonian 
given by equation (1) in some basis representing the/^ configuration of the 
particular rare earth, and to vary the Bkm until a best fit is obtained be- 
tween theoretical and experimental energy levels. The resultant Bkm, re- 
ferred to as the phenomenological crystal-field parameters, represent the 
net total interaction between the impurity ion and the host material and 
reflect the point-group symmetry at the impurity-ion site. Secondly, at- 
tempts have been made to derive the Bkm by devising models for consider- 
ing the fundamental interactions between the impurity ion and the host 
material. The Bkm obtained by this method, referred to as derived crystal- 
field parameters, are ab initio values to be compared with the phenomeno- 
logical Bkm f°r testing the accuracy of models. Once the models are refined 
so that derived and phenomenological Bkm are approximately equal, then 
the model can be used to predict the properties of new impurity-ion/host 
systems. 

2.1      Phenomenological Bkm 

According to the discussion above, the phenomenological Bkm that result 
in a best fit to experimental energy levels will not be unique, but will be 
functions of the basis chosen for diagonalizing Hx. Early theories em- 
ployed Russell-Saunders (JLS) states and operator-equivalent techniques 
to obtain Bkm that fit the experimental data in separate multiplets [1-5]. 
Once data were accumulated above the ground multiplets that are rela- 
tively pure, the more general operator-equivalent technique was used, 
which assumes (again) pure / states but with L and S mixing dependent on 
the free-ion Racah parameters, Ek, and the spin-orbit constant, £, corre- 
sponding to the Coulomb and spin-orbit interactions. In each of these pro- 
cedures, / mixing by the crystal field was neglected, owing primarily to the 
unavailability of adequate computer facilities. Later, the entire/2,/3,/12, 



and/11 configurations, respectively, of Pi3*, Nd3+, Tm3+, and Er3+ were di- 
agonalized and the B^m varied simultaneously with the free-ion param- 
eters to fit observed spectra in certain host materials [6-11]. This method, 
while in principle the most elaborate possible, suffers from the incapability 
of free-ion parameters to fit observed centroids and from its inability to be 
extended to the other fN configurations because of the large number of lev- 
els involved. 

To circumvent some of these problems, namely tractability, lack of /- 
mixing, and ill-fitting of centroids, Karayianis [12] introduced the method 
of an effective spin-orbit Hamiltonian (ESOH). After exhaustive applica- 
tion [13-21], it became clear that this method too was deficient because it 
operated in a Russell-Saunders basis that is valid only for certain isolated 
multiplets. 

To improve on this deficiency, Carnall et al [22] diagonalized a seven- 
parameter free-ion Hamiltonian, Hf/, of the form 

% = I E\ + CS h ■ s{ + och{L +1) + ßG(G2) + yG[R7) , (2) 
i i 

to obtain wavefunctions and reduced matrix elements. In equation (2), the 
Ek (k = 1, 2, and 3) are the Racah parameters, C, is the spin-orbit constant, 
and G(G2) and G(R.7) are the Casimir operators for the Lie groups Gi and 
R7. A subspace was then chosen of several of the low-lying multiplets and 
their centroids (usually 10 to 12 multiplets) varied independently along 
with the Bkm to fit theoretical to experimental energy levels [23]. From the 
resultant centroids, one may then determine the "free-ion" parameters that 
best fit the crystal spectra for the ion/host system in question [24]. This 
procedure has the advantage of complete diagonalization (provided a suf- 
ficient number of multiplets are chosen), so that the neglected multiplets 
do not appreciably affect the crystal splittings in the energy range of inter- 
est, and the resultant centroids do not indicate that "free-ion" parameters 
differ appreciably from those that initially determined the wavefunctions. 

Experimental problems, as well as the theoretical one discussed above, are 
encountered in the process of determining phenomenological crystal-field 
parameters. Many spurious lines appear in the spectra, as well as the not- 
so-spurious ones of vibronic origin, which serve to complicate the identifi- 
cation process. In addition, imperfections in the host crystal as well as 
magnetic dipole transitions between certain levels serve to destroy the 
prominent electric dipole selection rules and make identification difficult. 
In such cases, other data are very useful, such as electron spin-resonance 
measurements that accurately determine the properties of the ground state 
[25-35]. These measurements and Zeeman measurements [36] that deter- 
mine g factors for the ground and certain excited states quite frequently 
can be of assistance in identifying levels, as well as placing restrictions on 
the Bkm, when used with the energy-level fitting procedure [37]. The par- 
tial g-sum rule has been developed in this connection to provide experi- 
mentalists with a further tool for identifying spectra [38]. 



2.2       Derived Bkm 

The approach to deriving crystal-field parameters begins with the ligand 
field assumption that gives 

Bkm = {ik)Akm, (3) 

where (rk) is the kth moment of the impurity ion's radial wavefunction and 
the Akm are components of the spherical tensor decomposition of the crys- 
talline electrostatic field, referred to as crystal-field components. To evalu- 
ate the Akm, one begins with a simple point-charge lattice sum [34,39,40]. 
Other refinements have been included, such as the effects of higher mo- 
ments of charge distribution of neighboring ions [41,42], overlap with the 
ligand [43-45], and molecular orbitals involving the rare-earth ion [46]. 
The most significant modification to equation (3) was a result of consider- 
ing the shielding effects of the outer 5s25p6 and the inner core electrons 
that are expressed in the form of shielding factors [47-51], Ok, which gives 

^(^(l-oJA^. (4) 

Other effects, notably possible local distortion of the crystalline host mate- 
rial, that could revise the form of derived Bkm °r affect the results in other 
ways were investigated and discarded [52], with the exception of a modifi- 
cation of (rk)nF evaluated with Hartree-Fock (HF) radial wavefunctions 
[53-56]. Since calculations of Slater integrals using HF wavefunctions give 
very much larger values than those determined experimentally [57,58], it 
was concluded that an appropriate modification to the HF values of (rk) 
should be 

(r*) = T~k (r^HF , (5) 

where x < 1. The T for each lanthanide are assumed to be approximately 
host-independent, consistent with previous calculations that show Slater 
integrals to be only moderately host-dependent [59,60]. Other improve- 
ments in the techniques for evaluating (r*) that have not yet been incorpo- 
rated in these calculations include electron correlation effects [61] (that cor- 
respond to higher order corrections to the many-body problem), 
relativistic effects [62], and the dielectric effects of the medium [60]. We 
have obtained values for the Akm for a number of hosts by performing a 
lattice sum assuming valence charges for the constituent ions of the host 
lattice [63]. Brewer [64] later incorporated covalency effects, known to be 
important for tightly bound radicals in the lattice, by assuming an arbi- 
trary charge q for the covalent anion, consistent with the total charge of the 
radical, and considering its effective position, r\, to be slightly shifted from 
the nuclear position. The Akmiqri) obtained in this manner are functions of 
the q and 77, which were then varied along with T defined above to fit de- 
rived Bkmi^qVi) of the form 

Bkm (vqn) = t~k <r%p (1 - ck)Akm(qn) (6) 

10 



to phenomenological Bkm determined by the ESOH method for several lan- 
thanides in CaW04 [65]. 

Later, improvements on the method for determining the A\m were devel- 
oped by the self-consistent inclusion of the electrostatic field due to electric 
dipoles induced in the host lattice [66]. This, in effect, obviates the use of 
the fictitious 77 and replaces it with other parameters, the polarizabilities of 
the host ions. The inclusion of the host's dipoles may result in a more 
accurate representation of the host, as well as in the parameterization of 
the electrostatic field in terms of measurable quantities such as the 
polarizabilities. 

2.3      Electric and Magnetic Dipole Transition Probabilities 
and Branching Ratios 

The odd-k Akm, the rk expectation values between the lower 4/and higher 
nd and ng configurations, and AM/ = Eni - Ey energy differences [64,67] are 
required for calculating electric dipole intensities for the lanthanides [68- 
70]. Recent methods for obtaining some of the (nl I r* 14/) and A„; have given 
fairly accurate results for these quantities in the Hartree-Fock approxima- 
tion, and interpolations have given approximate values for all the lan- 
thanides [71]. Crystal wavefunctions that result from the fitting of energy 
levels with a phenomenological Hamiltonian are used to obtain level-to- 
level intensities for various polarizations to be compared with experiment 
[72]. These calculations provide a crucial test for the adequacy of the mod- 
els. A fairly complete set of predicted spectra and intensities assuming S4 
or higher point-group symmetry has been reported for all the lanthanides 
in 10 host materials [73-82]: CaW04, L1YF4 (yttrium lithium fluoride— 
YLF), YVO4, YPO4, YAs04, Y2SiBe207, Y3AI5O12 (yttrium aluminum gar- 
net—YAG), Y3Ga5Oi2 (yttrium gallium garnet—YGG), YAIO3 (YALO), 
and LnP50i4 where Ln is one of the lanthanides. 

In the intensity calculations for rare-earth ions, as in cases [83] like LaF3, 
the dipole operator, p = -er, is replaced by the effective dipole operator of 
Judd [68] and Ofelt [69] by 

Ma=-\fll(2t + imtiA®U^, (7) 
K,t 

where a = 0, ±1, t = 2,4, and 6, and k = l,3,5, and 7, with [A®U®fa repre- 
senting a coupling of the irreducible tensors A^ and UW by a Clebsch- 
Gordan coefficient to form a tensor of rank 1 and projection a. The A^ is a 
tensor whose components are Akm- hi equation (7), a factor e, the electronic 
charge, has been suppressed so that the units of fi are angstroms and those 
of Sff (to be discussed later) are Ä2. Also, 

Nk(t) = X\/27TT W(kl33;tl)Rk(!){1(0) 1(0)| 3(0))(3(0) fc(0)| 1(0)) , (8) 
/ 
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where the sum covers the values / = 2 and 4, W(abcd;ef) is a Racah coeffi- 
cient, and (a(a) b(ß) I c(<5)) is a Clebsch-Gordan coefficient [84]. The Rk(l) of 
equation (8) are given by 

Rk{l) = Y,W\nl){nlWf)/*Enl, (9) 

where (n'Z'l rk\ nl) are radial matrix elements of rk between states nl and nV 
and AEni is the difference [85] in energy between the configurations 4/N-1n/ 
or 3^4/N+1 and the configuration 4fN. Values of Rk(l) for all the triply ion- 
ized rare-earth ions are given elsewhere (Leavitt and Morrison [83], table 
II) along with the detailed description of the derivation of the results. The 
electric dipole line strengths were computed from 

S; = II(fk|f)|2 (10) 
ß 

where the sum on/and i on the right side covers the various components 
of the wave functions of the energy levels of/and i. 

The magnetic dipole operator used in the computations is 

M = \aoa0^+geS) , (11) 

where OQ is the fine structure constant and a0 is the Bohr radius. Also, as in 
the case of the electric dipole operator, the electronic charge is suppressed 
and ge is the free-electron g-factor. Similar to equation (10), the magnetic 
dipole line strength is 

S$ = l\(f\m\i)\2 ■ (12) 

In both the electric and magnetic dipole cases, a multiplet-to-multiplet line 
strength is defined by 

if 

where i refers to the levels in the multiplet / and/refers to the levels in /'. 
The multiplet-to-multiplet branching ratios for electric or magnetic dipole 
transitions are given by 

ßn- 
{ErEr]3s» , (13) 

I,{ErEr) Sn 

n 

12 



with the /' sum covering all multiplets such that Ej > Ey, and we have as- 
sumed that each multiplet is equally populated. All the above quantities 
and some combinations were calculated elsewhere [83] as well as g values, 
where they exist, for each level. The comparison with experimental results 
was, in general, very good and gave considerable confidence in the 
method and encouragement toward future computations. 

3. Computer Programs 
Computer programs were developed at Harry Diamond Laboratories 
(now part of the Army Research Laboratory) to perform the calculations 
required in the above work. These programs were then extended so that 
we can now perform the following calculations for all the lanthanides, 4/N, 
and actinides, 5/N, for 1 < N < 13: 

(1) Calculate free-ion energies and derivatives with respect to the seven free- 
ion parameters, E1, E2, E3, £, a, ß, and j. 

(2) Calculate reduced matrix elements of the unit spherical tensors UP-\ U^\ 
and U^ among all the free-ion wavefunctions. 

(3) Select reduced matrix elements between free-ion wavefunctions for any 
preassigned subspace and form crystal subspaces for any point group 
other than Cj or C;-. 

(4) Diagonalize the crystal-field Hamiltonian in the subspace and vary the 
multiplet centroids and phenomenological crystal-field parameters to ob- 
tain a least-squares fit between theoretical and experimental energy levels. 

(5) Use centroids obtained in (4) with derivatives given in (1) to calculate new 
"free-ion" parameters relevant to the particular host. 

(6) Calculate electric and magnetic dipole transition probabilities between all 
crystal levels for any point group other than Cj or C;-. 

For deriving crystal-field parameters, a general lattice sum program has 
been developed for any site in the 230 space groups that can determine the 
electrostatic field due to the monopoles of the host ions — represented by 
Akm — and the self-consistent dipole — represented by A®m. 

Programs have also been written to perform a variety of less complicated 
calculations, such as determining branching ratios for the fluorescence of a 
higher multiplet to lower multiplets for any rare earth in any host material. 
We can then compare these multiplet-to-multiplet transition probabilities 
with sums over individual level-to-level transition probabilities to estab- 
lish the effects of multiplet mixing by the crystal field. Also, the Judd-Ofelt 
parameters, Qjt, are calculated along with theg-factors where applicable to 
the particular ion/host combination. 

The first application of all the computations mentioned above was to the 
analysis of a number of rare-earth ions in LaF3. In this host, which is hex- 
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agonal, the rare-earth ions occupy sites with C2 symmetry, with the princi- 
pal Ci axis perpendicular to the c-axis of the crystal. This calculation of all 
quantities was therefore a stringent test of the theory as developed above. 
In addition, other programs have been written to evaluate the laser proper- 
ties, such as threshold conditions, slope efficiency, etc, of single and two- 
species lasers as functions of the transition probabilities calculated as de- 
scribed in (6). 

4. Analysis of Rare-Earth Spectra 
The analysis of the spectra of rare-earth ions [86] in LaF3 is presented in 
some detail since the method used in the analysis is, in general, the same as 
used presently for those hosts where the rare-earth ion is assumed to oc- 
cupy a site of low symmetry (C2, Cs, D2, C2/1, and a crude approximation to 
C\ or Q). 

The methods outlined in section 2 were used in the analysis of the experi- 
mental data taken on a number of rare-earth ions in the host materials 
given in that section. That is, values of pk = {rk)HF (1 - Ok)/xk for each of the 
rare-earth ions were found, and they are given elsewhere [86]. These pk 
were used to determine Bkm = Pk^kmr with the Akm obtained by the mono- 
pole terms only and the latest detailed x-ray results for LaFß. The Bkm were 
then used as starting values in each ion with an odd number of electrons 
for which experimental data existed, and we determined a best fit to the 
experimental data by varying the Bkm- The ions with an odd number of 
electrons were chosen because in C2 symmetry there is essentially only one 
type of Kramer's doublet with the irreducible representation ^4 for these 
ions. We divided the Bkm thus determined by pk to determine a phenom- 
enological set of Akm) since it is assumed that the Akm are functions of the 
host only and not ion dependent, we simply averaged the set of Akm to ob- 
tain a unique Akm for each allowed value of k and m. These Akm were then 
used again as starting values in the fitting procedure, with possibly some 
reassignment of levels, and the fitting process repeated until it was deter- 
mined that nothing more could be gained by continuing the process. The 
resulting Akm were then used as starting values in the same fitting process 
of the data on ions with an even number of electrons. Finally, the same 
procedure was used on all the ions employing all the experimental data. 

A similar, but more extensive, analysis was made on rare-earth spectra 
and intensity measurements of these ions doped in Y2O3 [85,87-90]. This 
host material has two types of sites; one site has C2 symmetry and the 
other site has C^i symmetry. The latter site has much weaker absorption, as 
only magnetic dipole transitions are allowed in C3; symmetry. The agree- 
ment between experiment and theory for the C^i site was quite poor. The 
agreement with experiment was better on the C2 sites, but not as good as 
was achieved for the calculations on rare-earth ions in LaFß. A similar cal- 
culation to the above was done on the spectra of Nd3+ and Er3+ in 
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Bi4Ge30i2 [91], but most of the calculation was of a predictive nature be- 
cause of a lack of experimental data on rare-earth ions in this host. 

The absorption spectra of a number of rare-earth ions in Y3AI5O12 (YAG) 
[92-96] have been analyzed with phenomenological crystal-field param- 
eters obtained in all cases, but with only limited application of the other 
aspects of the theory described above. The analysis was limited to com- 
parison with available experimental data. 

Similarly, the absorption and emission spectra of a number of rare-earth 
ions in mixed garnets [97-101] have been analyzed with phenomenologi- 
cal crystal-field parameters obtained and branching ratios calculated in 
many cases. One result obtained for all the garnets analyzed was that the 
best fit to the phenomenological Bkm was achieved with an oxygen charge, 
q0 = -1.8, which is used in the monopole sum given by 

Ata.-,2ia%#>, (i4) 
1 if1 

where qj is the charge (in units of electronic charge) on the ion at Ry. 

A different application of the theory was in the analysis of the spectra of 
triply ionized erbium in Er As [102]. The absorption spectra of Er3+ in a 
thin film of Er As, which was grown by molecular beam epitaxy on a sub- 
strate of GaAs, were reported [103]. In ErAs the erbium ion site has O/j 
symmetry, and only magnetic dipole transitions are allowed. The reported 
energy levels were analyzed, and the phenomenological crystal-field pa- 
rameters, Bjtm, were obtained. These Bkm and the matrix elements of the 
magnetic dipole operator were used in equation (12) to give the calculated 
absorption spectra as a function of temperature. A Lorentz line shape was 
assumed with a line width of 3 cm"1 as reported, and when the results 
were plotted on a comparable scale, practically a perfect match was 
achieved for the three temperatures of the reported data. Later the analysis 
was extended [104] to include a prediction of the absorption spectra of 
other lanthanides, Ln3+, in LnAs. 

Recently we have been collaborating with Norman Barnes of NASA Lan- 
gley Research Center and his co-workers on the analysis of potential 1.5- to 
2-|j.m lasers. For this purpose, we chose the ions Ho3+ and Tm3+ as the las- 
ing ions and calculated the line-to-line temperature-dependent branching 
ratios for these ions in the site with D2 symmetry in 10 garnet hosts 
[105,106]. Of these hosts, we had good experimental data on Ho3+ in YAG 
[96] and limited experimental data on Ho3+ in YßGasOn (YGG). Using the 
procedure outlined above, we found that the best fit to the phenomeno- 
logical Bkm using equation (14) was achieved for q0 = -1.79. However, 
when we used the predicted Bkm for Ho3+ in YGG, the calculated energy 
levels differed considerably from the experimental values. We then de- 
cided to obtain a better set of pk for Ho3+ by using the concept of rotational 
invariance [107-109]; that is, 
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Pk = Sk(B)/Sk(A), (15) 

where 

S*(X) = 
k 

X xkmxkm 
m=-k 

lV2 
(16) 

with Sjt(B) computed with the phenomenological crystal-field parameters 
for Ho3+ in YAG, and Sk(A) calculated with q0 = -1.7 in equation (14). With 
the pk thus determined, the Bkm were calculated along with the energy lev- 
els for Ho3+ in the remaining nine garnets. The odd-A: Akm were also com- 
puted with equation (14) and q0 = -1.7. The line-to-line radiative lifetimes 
were calculated for levels i in the 5l7 multiplet to levels; in the 5Is multiplet 
ofHo3+by 

I    327i3aQ 

Ta 3c2 
X. . .Sed + X.S^)v3 (17) 

where 

xa 9 
(18) 

X\rn\ (19) 

tiij is the index of refraction at the wavelength A;y (Az/(um) = 104/(E/ - Ej)) 
and OQ is the fine structure constant (l/ccg = 137.0373). 

The branching ratios as a function of temperature are given by 

ßiPY- 

ij r>) 

(20) 

and 

e-E{/kT 

2'" 
(21) 
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In equations (17) through (21), it is assumed that i belongs with levels in 
the 5l7 multiplet and ;' belongs with levels in the 5Is multiplet. The tempera- 
ture-dependent branching ratios were calculated with equation (20). Equa- 
tions (17) through (21) above were also used in a model of a quasi four- 
level laser, and it was found that for room temperature, the YsGasO^ 
(YGG) host had the lowest threshold for H7 -> 4Is laser threshold. 

These computations were repeated for Tm3+ in the 10 garnets with the 
transition from the 3p4 to the 3H(, multiplet (the 4F4 multiplet is frequently- 
labeled the 3H4 multiplet). In the calculations for both Ho3+ and Tm3+, the 
index of refraction in each garnet was represented by a Sellmeier equation 
with the constants in the equation determined by fitting of the experimen- 
tal values. In most analyses of data taken on the spectra of the heavy rare- 
earth ions in the garnet hosts, the transitions are assumed to be electric di- 
pole, and the Judd-Ofelt parameters, Qfc, are used. However, because of the 
strong crystal fields in the garnets, there is considerable / mixing in the 
wavefunctions that is not taken into account by the simple Judd-Ofelt 
analysis, which assumes electric dipoles only and no / mixing by the crys- 
tal field [110]. Further, we have found that for many of the transitions, the 
strength of the magnetic dipole given by equation (12) was as large or 
larger than the electric dipole strength given by equation (10). Conse- 
quently, we have included both / mixing by the crystal field and magnetic 
dipole transitions in the analysis. 

5.  Conclusion 
Most of the discussion given here has been directed toward the derivation 
of even-A: Akm such that pkAkm is a best approximation to the phenomeno- 
logical Bkm obtained from the experimental energy levels. Here the Akm are 
from the point ion model and its extension to include the dipole correction, 
developed at Harry Diamond Laboratories (now part of the Army Re- 
search Laboratory). We then use the theory to derive odd-k Akm for the 
electric dipole transition calculations. The derived Bkm are used for the 
magnetic dipole transitions. In these calculations, the emphasis has been 
on predicting, rather than explaining, the quantities involved in the 
crystal-field splittings and the intensity of line-to-line transitions. 

The research workers at Laboratoires de Bellevue, France, have extended 
the contributions to the quadrupole moments of the ions in the solid 
[111-116] obtaining Akm = AJ^ + A\\ + A$m. They found that the contribu- 
tion from the quadrupoles, when handbook values of the dipole polariz- 
ability, ax, and quadrupole polarizability, a2, are included, is 
\A9 I < I A? \<\A9 I • This may be caused by saturation of both polarizabili- 
ties because of the extremely large dipole and quadrupole fields. Of course 
there is the possibility that the multipolar expansion diverges, but it is 
more likely that the handbook values of a.\ and a2 should be considerably 
reduced for the calculation of A®m and A^ ■ It would then seem reason- 
able to attempt to fit the phenomenological Akm as was discussed in section 
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2.2 by varying the point charges along with the polarizabilities. Such a pro- 
cedure is very long and very tedious, and we have neither the manpower 
nor the funding to undertake this task. 

Thus it seems that the procedure of varying the ligand charges is the 
method that we shall use for some time. It should not be forgotten that the 
purpose of varying the charges and other quantities was not just to be able 
to reproduce the phenomenological crystal-field parameters, Bkm (even k), 
but to calculate with a certain degree of confidence the Akm with k odd and 
to use these parameters in the calculation of the transition probabilities. 
The so-called Judd-Ofelt parameters, which are easily calculated given the 
odd-k Akm and which are experimentally determined, differ considerably 
from measurement to measurement for the same ion in the same host 
[110]. For the heavier rare-earth ions, ignoring the magnetic dipole contri- 
butions puts the experimental results in doubt. Some experimental quan- 
tity or quantities are needed to give the quality of the predicted intensity 
when compared with the measured intensity. 

Despite these difficulties, work will continue in predicting temperature- 
dependent line-to-line branching ratios and in predicting the behavior of 
more sophisticated laser systems. Of course, these systems will be com- 
pared with experiment wherever possible, and improvements in the 
theory will be instituted to bring the two into closer agreement. Work is in 
progress towards applying the calculated line-to-line transition probabili- 
ties to up-conversion and to energy exchange in such laser systems as Tm, 
Ho:YAG, and other rare-earth ion/host combinations. 
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